Working with Tables and Data Types in PostgreSQL
- Database PostgreSQL
Team CNC
- 11 February 2025
- 0
- 12 minutes read
PostgreSQL is a powerful, open-source relational database management system (RDBMS) that supports a wide range of data types and table structures. Understanding how to create and manage tables and choose appropriate data types is essential for optimizing database performance and ensuring data integrity.
1. Understanding Tables in PostgreSQL
In PostgreSQL, tables store data in a structured format, organized in rows and columns. Each column has a specific data type that defines the kind of data it can store. PostgreSQL supports a variety of built-in data types and allows users to define custom types as needed.
2. Creating Tables in PostgreSQL
2.1 Basic Table Creation
To create a simple table in PostgreSQL, use the CREATE TABLE
command:
CREATE TABLE employees (
id SERIAL PRIMARY KEY,
name VARCHAR(100) NOT NULL,
age INT CHECK (age > 18),
department TEXT,
salary DECIMAL(10,2),
joining_date DATE DEFAULT CURRENT_DATE
);
Explanation of Columns:
id SERIAL PRIMARY KEY
: Automatically generates a unique identifier for each row.name VARCHAR(100) NOT NULL
: Stores variable-length character data (up to 100 characters) and ensures it is not null.age INT CHECK (age > 18)
: Stores integers and enforces a constraint that age must be greater than 18.department TEXT
: Stores unbounded text data.salary DECIMAL(10,2)
: Stores monetary values with up to 10 digits, including 2 decimal places.joining_date DATE DEFAULT CURRENT_DATE
: Stores dates and sets the default value to the current date.
3. PostgreSQL Data Types
PostgreSQL supports multiple data types, categorized as follows:
3.1 Numeric Data Types
Data Type | Description | Example |
---|---|---|
SMALLINT | Stores small integers (-32,768 to 32,767) | 100 |
INTEGER | Stores standard integers (-2.1B to 2.1B) | 100000 |
BIGINT | Stores large integers (-9 quintillion to 9 quintillion) | 100000000000 |
DECIMAL(p,s) | Stores precise decimal values (p = precision, s = scale) | 99.99 |
NUMERIC(p,s) | Similar to DECIMAL , stores exact values | 123.456 |
REAL | Stores floating-point numbers | 3.14 |
DOUBLE PRECISION | Stores high-precision floating-point numbers | 3.1415926535 |
3.2 Character Data Types
Data Type | Description | Example |
---|---|---|
CHAR(n) | Fixed-length character string (padded with spaces if needed) | ‘ABC ‘ |
VARCHAR(n) | Variable-length character string | ‘PostgreSQL’ |
TEXT | Unbounded text data | ‘This is a long paragraph’ |
3.3 Date & Time Data Types
Data Type | Description | Example |
---|---|---|
DATE | Stores a date (year, month, day) | ‘2025-03-28’ |
TIME | Stores time (hour, minute, second) | ’14:30:00′ |
TIMESTAMP | Stores both date and time | ‘2025-03-28 14:30:00’ |
INTERVAL | Stores a time span | ‘1 year 2 months’ |
3.4 Boolean Data Type
Data Type | Description | Example |
---|---|---|
BOOLEAN | Stores TRUE , FALSE , or NULL | TRUE |
3.5 JSON and JSONB Data Types
Data Type | Description | Example |
---|---|---|
JSON | Stores JSON data as a text string | ‘{“name”: “John”, “age”: 30}’ |
JSONB | Stores JSON data in a binary format for faster querying | ‘{“name”: “John”, “age”: 30}’ |
3.6 Array Data Type
PostgreSQL supports arrays for storing multiple values in a single column:
CREATE TABLE students (
id SERIAL PRIMARY KEY,
name VARCHAR(100),
subjects TEXT[]
);
Inserting values into an array column:
INSERT INTO students (name, subjects) VALUES ('Alice', ARRAY['Math', 'Science']);
4. Modifying Tables in PostgreSQL
4.1 Adding a New Column
To add a new column to an existing table:
ALTER TABLE employees ADD COLUMN email VARCHAR(255);
4.2 Modifying a Column
To change the data type of a column:
ALTER TABLE employees ALTER COLUMN age TYPE BIGINT;
4.3 Renaming a Column
To rename a column:
ALTER TABLE employees RENAME COLUMN salary TO monthly_salary;
4.4 Dropping a Column
To delete a column from a table:
ALTER TABLE employees DROP COLUMN department;
5. Deleting Tables in PostgreSQL
To remove a table completely:
DROP TABLE employees;
⚠ Warning: This action permanently deletes the table and all its data.
To delete a table only if it exists:
DROP TABLE IF EXISTS employees;
6. Managing Table Constraints
PostgreSQL allows defining constraints to enforce data integrity:
6.1 Primary Key Constraint
Ensures each row has a unique identifier:
CREATE TABLE users (
id SERIAL PRIMARY KEY,
username VARCHAR(50) UNIQUE NOT NULL
);
6.2 Foreign Key Constraint
Ensures referential integrity between tables:
CREATE TABLE orders (
order_id SERIAL PRIMARY KEY,
user_id INT REFERENCES users(id) ON DELETE CASCADE
);
6.3 Unique Constraint
Ensures values in a column are unique:
ALTER TABLE users ADD CONSTRAINT unique_username UNIQUE(username);
6.4 Not Null Constraint
Prevents columns from storing NULL values:
ALTER TABLE employees ALTER COLUMN name SET NOT NULL;
7. Best Practices for Table and Data Management
Use Appropriate Data Types: Choose the right data type for optimal storage and performance.
Index Frequently Queried Columns: Create indexes to speed up searches.
Normalize Data: Avoid redundancy by structuring tables efficiently.
Use Constraints for Data Integrity: Ensure data accuracy using PRIMARY KEY, FOREIGN KEY, NOT NULL, CHECK, and UNIQUE constraints.
Regularly Analyze and Vacuum Tables: Optimize database performance with:
VACUUM ANALYZE;
8. Conclusion
Understanding how to create and manage tables and selecting the right data types in PostgreSQL is crucial for building efficient, scalable databases. By leveraging PostgreSQL’s powerful data types, constraints, and table modification commands, developers can ensure data integrity, optimize queries, and improve overall performance.